(

Synthesis and structural study of $\left[\left\{\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right)\right\rangle_{2}(\mu-\mathrm{Br})(\mu-\mathrm{X})\right]$ complexes $(\mathrm{X}=$ hydroxide, amide or thiolate)

José Ruiz ${ }^{\text {a }}$, Natalia Cutillas ${ }^{\text {a }}$, José Sampedro ${ }^{a}$, Gregorio López ${ }^{\text {a }}{ }^{*}$, Juan A. Hermoso ${ }^{\text {b }}$, Martín Martínez-Ripoll ${ }^{\text {b }}$
${ }^{3}$ Departamenuo de Quimica Inorgánica. Universidad de Marcia, 3007 I Murcia, Spain
${ }^{\text {b }}$ Inssituto de Química-Física 'Recasolumo'-CSIC. Serrano 119, 28006 Madrid. Spain

Received 29 February 1996; revised 14 May 1996

Abstract

The mixed hydroxo-bromo bridged complex $\left\{\left\{\mathrm{PdCC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)\right\}_{2}(\mu-\mathrm{Br})\left(\mu\right.$-OH)] (1) $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}=2 \cdot[(\right.$ dimethylamino)methyllphenyl) has been prepared by addition of one equivalent of $\mathrm{NBu}{ }_{4} \mathrm{OH}$ to $\left[\left(\mathrm{Pd}^{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)\right)_{2}\right]$ in acetone -water solution, followed by addition of one equivalent of LiBr. Complex 1 reacts with arylamines or thios in $1: 1$ mole ratio to yiek the corresponding amido- or thiolato-bromo complexes $\left.\left\{\left\{\mathrm{PJIC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)\right\}_{2}(\mu-\mathrm{Br})(\mu-\mathrm{NHR})\right\}\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}\right.$ (2), $p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$ (3), p - $\mathrm{MeOC}_{6} \mathrm{H}_{4}$ (4)) or $\left.\left[\left(\mathrm{Pad}_{6} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)\right]_{2}(\mu-\mathrm{Br})(\mu-\mathrm{SR})\right]\left(\mathrm{R}=\mathrm{Et}(5)\right.$, ${ }^{\mathrm{Bu}}(6), \mathrm{C}_{6} \mathrm{H}_{5}(7), p-\mathrm{MeC}_{6} \mathrm{H}_{4}$ (8)). The H NMR data indicate a eis arrangement of the $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}$ ligands. The crystal structure of compound 1 has been determined by X -ray diffraction. It crystallizes in the orthorhombic space group Pleca with $a=12.445(3), b=18.029(3), c=17.436(3) \AA$. Final $R=0.039$ and $R_{11}=0.040$ bused on 2692 reflections.

Reynurds: Palladium: Cyclonetallated; Hydroxo: Amido; Thiolato; X-ray diffraction

I. Intruduction

The binuclear hydroxo compounds $\left[\left(\mathrm{MR}_{2}\left(\mu^{-}\right.\right.\right.$ $\mathrm{OH}))_{2} 3^{2-}\left(\mathrm{M}=\mathrm{Ni}, \mathrm{Pd}\right.$ or $\mathrm{Pt} ; \mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{5}$ or $\left.\mathrm{C}_{6} \mathrm{Cl}_{5}\right)$ and $\left[\left\{\mathrm{R}\left(\mathrm{PPh}_{3}\right) \mathrm{Pd}(\mu-\mathrm{OH})\right]_{2}\right] \quad\left(\mathrm{R}^{m a} \mathrm{C}_{6} \mathrm{~F}_{5}\right.$ or $\left.\mathrm{C}_{6} \mathrm{Cl}_{5}\right)$ have proven to be excellent precursors for the synthesis of binuclear palladium or platinum complexes with double bridges ($\mathrm{X}=$ azolate, amide, methoxide or dicyanomethanide) by reaction between the di- μ-hydroxo complex and the corresponding protic acid HX [1-8]. Very recently we have described [9] the synthesis of the hydro.a carboxylato-bridged complex $\left[\left\{\mathrm{Pd}^{2} \mathrm{CH}_{2} \mathrm{C}_{4}\right.\right.$ $\left.\left.\left.\mathrm{H}_{6} \mathrm{~N}\right)\right)_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CR}\right)(\mu-\mathrm{OH})\right]\left(\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}=8\right.$-quinolylmethyl) and its reactivity towards amines and thiols to yield the corresponding amido- or thiolato-carboxylato complexes $\left[\left\{\mathrm{Pu}^{2}\left(\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right)\right\}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CR}\right)(\mu-\mathrm{X})\right](\mathrm{X}=$ amide or thiolate).

Complexes containing the $\mathrm{Pd}(\mu-\mathrm{Br})(\mu-\mathrm{OH}) \mathrm{Pd}$ bridge are rare in the literature. The present work concerns the

[^0]synthesis and structural study of the hydroxo-bromobridged complex $\left[\left\{\mathrm{Pd}_{6} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)\right)_{3}(\mu-\mathrm{Br})(\mu-$ $\mathrm{OH})]\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMC}_{2}=2-[(\right.$ dimethyl aminomethyllphenyl) and its reactivity towards amines and thiols to yield the corresponding anidoe or thio-lato-bromo complexes $\left[\left(\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)\right)_{2}\left(\mu^{-}\right.\right.$ $\mathrm{Br})(\mu-\mathrm{X})]$ ($\mathrm{X}=$ amide or thiolate).

2. Results and discussion

Addition of one equivalent of $\mathrm{NBu}{ }_{4} \mathrm{OH}$ to $\left[\left(\mathrm{Pd}^{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)\right\}_{2}\right]$ in acctone-water solution, followed by addition of one equivalent of LiBr , results in the formation of the hydroxo-bromobridged complex 1 (Scheme 1) in good yield (Table 1). The analytical data (Table 1) are in agreement with the proposed formula. The presence of the OH-bridged ligand is showed by an IR band at $3465 \mathrm{~cm}^{-1}$ and a high-field ' H resonance at $\delta-1.70$ (see Section 3). The observation of only one set of 'H NMR resonances

1

R
$2 \mathrm{C}_{6} \mathrm{H}_{3}$
$3 \mathrm{p}-\mathrm{MaC}_{6} \mathrm{H}_{4}$
$4 \mathrm{p}-\mathrm{MaOC}_{8} \mathrm{H}_{4}$

Scheme 1. (a) OH , Br ; (if) NH, R: (ma)RSH.
for the $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{3}$ ligands in complex 1 indicates a eis arrangement for these groups.

The erystal structure of complex I has been established by Xoray diffraction, and a view of the molecule is depicted in Fig. I. Atomic coordinates and selected intramolecular distances and angles are shown in Tables 2 and 3 respectively. The molecule consists of a binurear (Pd) structure bridged by an OH group and a Br atom. Fig. I shows the cisoid arrangement of the cy-
clometallated ligands and the arrangement of the bridges so that the Br utom is trans to carbon.

The Pd atoms are in approximately square-planar coordination (maximum deviations from the mean plane defined by all of them being $0.0762(6) \AA$ for Pdl and $0.0443(6) \AA$ for the Pd 2 atom), the two planes forming an angle of 13° between them. The angles around the Pd atoms deviate from the square disposition due to the bite of the bidentate $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}$ ligand. Phenyl

Table 1
Analytical data. yields and physical properties for the new complexes

Complex	$\begin{aligned} & \text { Yield } \\ & \text { (\%) } \end{aligned}$	$\begin{aligned} & M_{1 p}{ }^{\circ} \\ & \left(\theta / /^{\circ} \mathrm{C}\right. \end{aligned}$	Analysis (\%) ${ }^{\text {P }}$				$\begin{aligned} & \mathbb{R}^{2} \text { bands } \\ & \left(\mathrm{cm}{ }^{1}\right) \end{aligned}$
			C	H	N	5	
$1{ }^{18}$	67	150	37.1 (37.4)	4,3(4,4)	$4.7(4.9)$		$346510(\mathrm{OH})$
2	92	188	44.2(44.1)	4.7 (4.6)	$6.2(6.4)$		$33.30 \sim(\mathrm{NH})$
3	68	183	44.8 (45.0)	4.8 (4.8)	6.0)(6.3)		$3330 \cdot r(\mathrm{NH})$
4	88	194	43.6 (43.9)	4.5 (4.7)	$6.0(6.2)$		$3340 \cdot(\mathrm{NH})$
3	60	191	38.7 (38.6)	4.8(4.7)	4.4 (4.5)	$5.0(5.2)$	
6	66	195	$40.7(40.6)$	5.2 (5.1)	4.3 (4.3)	4.9 (4.9)	
7	89	188	42.8 (43.0)	4.3 (4.4)	4.0 (4.2)	4.6 (4.8)	
8	88	172	43.6 (43.9)	4.5 (4.6)	4.0(4.1)	$4.4(4.4)$	

[^1]

Fig. 1. An ortes [10] drawing of the compound 1 showing 50% probability ellipsoids and the atom-labelling scheme. Hydrogen atoms are omitted for clarity.
rings are planar. Structures containing the $\mathrm{M}(\mu-\mathrm{Br})(\mu-$ $\mathrm{OH}) \mathrm{M}$ bridge are not common in the literature, and to the best of our knowledge, the $\operatorname{Pd}(\mu-\mathrm{Br})(\mu-\mathrm{OH}) \mathrm{Pd}$ bridge is the first to be characterized in a diffraction study. The angles on the Br and O atoms are 78.23(3) ${ }^{\circ}$ and $106.8(2)^{\circ}$. The $\mathrm{Pd}-\mathrm{O}$ distance (2.029(5) and $2.034(5) \AA$) is slightly shorter than that found in $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pd}(\mu-\mathrm{OH})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]^{2-}$ (2.077(6) and $2.068(6) \AA$, the PdOPd angle being $\left.98.8(0.4)^{\circ}\right)$ [1].

Crystal packing presents a partial stacking pattern of aromatic interactions [11] forming chains along the a axis (see Fig. 2). The two phenyl groups involved in the
interaction present an interplanar angle of 21.2°, a lateral offset of $5.39 \AA$ and a distance between centroids of $6.02 \AA$.

Mixed amide complexes of the types anti$\left[\left\{\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right)_{2}(\mu-\mathrm{NHR})(\mu-\mathrm{OH})\right]$ and cis$\left[\left(\mathrm{Pd}\left(\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right)\right)_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CR}^{\prime}\right)(\mu-\mathrm{NHR})\right]\left(\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right.$ $=8$-quinolylmethyl) have been previously reported [6,9]. Addition of amine RNH_{2} to a solution of the hydroxo-bromo complex 1 in chloroform gives (70$90 \%$ yields; Table 1) the corresponding bromo-amidobridged complexes $\left[\left(\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)\right)_{2}(\mu-\mathrm{Br})(\mu-\right.$ NHR)] ($\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$ 2, $p-\mathrm{MeC}_{6} \mathrm{H}_{4}$ 3, $p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$ 4) with the concomitant release of water (Scheme 1). These complexes gave satisfactory partial elemental analyses (Table 1), and the IR spectra (Table 1) show a weak absorption at ca. $3330 \mathrm{~cm}^{-1}$ assigned to the $\mathrm{N}-\mathrm{H}$ stretching vibration.

The ${ }^{\prime}$ H NMR spectra (see Section 3) of complexes 2-4 show two singlet resonances for the $\mathrm{N}-\mathrm{Me}$ groups and an AB quartet for the CH_{2} protons of bonded $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}$, since they are diastereotopic due to the two different substituents in the amide ligand with the lack of a symmetry plane in the $\mathrm{Pd}-\mathrm{O}-\mathrm{Pd}-\mathrm{N}$ core: no dynamic behaviour is observed at room temperature [12]. These data also suggest a cis arrangement of the $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}$ ligands. The NMR patterms observed for the aromatic proton signals of the RNH group indicate that rotation about the $\mathrm{C}-\mathrm{N}$ bond is rapid on the ${ }^{1}$ H NMR time scale.

Table 2
Atome parameters $\left(x 10^{4}\right.$) for compound 1: coordinates and thetmal parameters as $U_{\text {el }}$ "

Atom	x	y	:	t_{44}
PdI	$722(1)$	1170(0)	$834(0)$	$34(0)$
Pd2	$=1380 \times 0)$	$733(0)$	-185(0)	$33(0)$
Br 1	$-1111(1)$	$667(1)$	1285(1)	$55(0)$
NI	1297(6)	15160 (4)	1901(4)	4421
N2	-3028(5)	583(3)	- 177(4)	$37(1)$
01	223(4)	945(3)	-248(3)	41(1)
Cl	852(9)	2257(6)	205\%(6)	65(3)
C2	1006(8)	$1013(6)$	2531(5)	$60 \times 3)$
C3	2478(8)	1555(6)	1856(6)	$57(2)$
C4	2707(6)	1802(4)	1073(6)	$46(2)$
C5	2063 (6)	1643(4)	470)(5)	$40 \times 2)$
C6	230067)	1856(4)	- $263(5)$	$43(2)$
C7	$3229(8)$	6205(5)	-433(7)	62(3)
C8	$3054(8)$	2342(5)	14418)	$63(3)$
C9	$3746(8)$	2154(5)	$881(8)$	64(3)
C10	$-3519(8)$	1312(5)	-67(7)	$50(2)$
Cl 1	-3423(7)	$60(6)$	$403(5)$	$51(2)$
Cl 2	-3321(7)	$287(5)$	-952(6)	$52(2)$
Cl 3	-2610)6)	$621(4)$	-1539(5)	$39(2)$
C14	- 158% (6)	812(4)	-1302(5)	$39(2)$
C15	-855(7)	1092(5)	-1810(5)	46(2)
C16	- $1142(9)$	$1161(6)$	- $2568(6)$	59(3)
C17	$-2187(9)$	$979(5)$	-2811(5)	$57(3)$ $57(2)$
C18	-2895(8)	71006	-2303(6)	$57(2)$

[^2]Table 3
Selected intramolecular distances (\AA) and angles (deg) for I with estimated standard deviations in parentheses

Bonds			
Pdl-Brl	2.582(1)	$\mathrm{Ni}-\mathrm{Cl}$	1.489(13)
PdI-NI	2.080(7)	$\mathrm{Nl}-\mathrm{C} 2$	1.459(12)
Pdl-Ol	2.029(5)	$\mathrm{Ni}-\mathrm{C} 3$	1.475(12)
PdI-C5	1.969(8)	N2-C10	1.462(11)
Pd2-Brl	$2.588(1)$	N2-Cl1	$1.467(12)$
Pd2-N2	2.069(6)	N2-Cl2	1.498(12)
Pd2-OI	$2.034(5)$	C3-C4	1.480 (15)
Pd2-Cl4	1.969(8)	C12-C13	1.481(13)
Angles			
Ol-Pdi-Cs	93.1(3)	C2-N1-C3	108.9(7)
N1-PdI-Cs	82.4 (3)	$\mathrm{Cl} 0-\mathrm{N} 2-\mathrm{Cll}$	$110.3(7)$
$\mathrm{Brl}-\mathrm{Pdl}-\mathrm{Ol}$	86.6 (1)	$\mathrm{C} 11-\mathrm{N} 2-\mathrm{Cl} 2$	108.1(6)
$\mathrm{Br}=\mathrm{Pdl}-\mathrm{Nl}$	$97.6(2)$	N1-C3-C4	108.0(8)
O1-Pd2-Cl4	93.5(3)	C3-C4-C5	$118.2(8)$
N2-Pd2-C14	83.5(3)	C3-C4-C9	124.2(9)
$\mathrm{Brl}-\mathrm{Pd} 2-\mathrm{Ol}$	86.3(2)	C5-C4-C9	117.48)
$\mathrm{Brl}-\mathrm{Pd} 2-\mathrm{N} 2$	$96.7(2)$	N2-Cl2-Cl3	109.5(7)
$\mathrm{Cl}-\mathrm{Nl}-\mathrm{C} 2$	108.8(7)	C12-C13-C14	116.4 (7)
$\mathrm{Cl}-\mathrm{Nl}-\mathrm{C} 3$	109.0(7)	C12-C13-Cl8	123.9(8)

Addition of thiols RSH to a solution of the hydroxo-bromo complex 1 in chloroform yields the corresponding bromo-thiotate-bridged complexes $\left[\left(\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{3}\right)\right)_{2}(\mu-\mathrm{Br})(\mu-\mathrm{SR})\right]\left(\mathrm{R}=\mathrm{Et} 5\right.$. ${ }^{1 \mathrm{Bu}}$ 6. $\mathrm{C}_{6} \mathrm{H}_{3} 7, p=\mathrm{MeC}_{6} \mathrm{H}_{4}$ 8) (Scheme 1). The analytical data and yields for these compounds are presented in Table 1. The related mixed thiolato-carboxylato-bridged complexes cis-[(Pd(CH $\left.\left.\left.\mathbf{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right)\right)_{2}(\mu-\mathrm{SR})(\mu-\mathrm{O}, \mathrm{CR})\right]$ $\left(\mathrm{CH}_{2} \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}=8\right.$ squinolylmethyl) [9] and cis $[\{\mathrm{Pd}(\mathrm{L}$ -$\left.\mathrm{L}),(\mu-\mathrm{SR})\left(\mu-\mathrm{O}_{2} \mathrm{CR}\right)\right](\mathrm{L}-\mathrm{L}=$ ortho palladated imine ligand) [13] have been recently reported.

The NMR data for the complexes 5,7 and 8 show a unique singlet resonance for N -Me protons and also a singlet for the CH_{2} protons of bonded $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{8} \mathrm{NMe}_{2}$. which suggests again the cis arrangement of the $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3} \mathrm{NMe}_{2}$ ligands. However. the NMR spectrum of complex 6 exhibits an $A B$ quartet resonance for the CH_{3} protons and two singlet resonances for the $\mathrm{N}-\mathrm{Me}$

Fig. 2. Crystal packing of the compound I showing aromatic interacthons as doted lines.
protons, which is in agreement with a slower rotation caused by the bulkier ${ }^{1} \mathrm{Bu}$ group.

3. Experimental details

The C. H. N. S analyses were performed with a Carlo Erba model EA l1OS raicroanalyser. The Br analyses were performed in the microanalyses service of the Centro de Investigación y Desarollo of the CSIC. Barcelona, Spain. Decomposition temperatures were delemined with a Metter TG-50 thermobadance at a heating rate of $5^{\circ} \mathrm{C} \mathrm{min}^{-1}$ and the solid sample under nitrogen flow ($100 \mathrm{ml} \mathrm{min}^{-1}$). The NMR spectay were recorded on a Bruker AC 200E or Varian Unity 300 spectrometer. using SiMe, as standard. Infrared spectra were recorded on a Perkin-Elmer 16F PC FT-IR spectrophotometer using Nujol mulls between polyethylene sheets. Solvents were dried by the usual methods. The starting complex $\left.\left[\left\{\mathrm{Pd}_{6} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)\right\}_{2}\right]$ was prepared by the procedure described in Ref. [I4].

3.1. Synthesis of the complexes

3.I.I. Complex 1

To a solution of $\left[\left(\mathrm{Pd}_{6}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)(\mu\right.\right.$ $\left.\mathrm{O}_{2} \mathrm{CMe}\right)_{2}$] (205.5 mg. 0.343 mmol) in accione ($1 \mathrm{~cm}^{3}$) was added 20% [$\mathrm{NBu}_{4} \mathrm{OH}(\mathrm{aq})\left(0.45 \mathrm{~cm}^{3}, 0.343 \mathrm{mmol}\right)$. with constant stirring. Addition of LiBr (29.8 mg , $0.343 \mathrm{mmol})$ yielded a white suspension, which was stirred at room temperature for 5 min. After partial evaporation of the solvent under reduced pressure, the white complex 1 was filtered off and air-dried.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta \quad 7.0-6.9(\mathrm{~m} .8 \mathrm{H}$. arom. of dmba), $3.71\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.69\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{NCH}_{3}\right)$. $-1.70(\mathrm{~s}, \mathrm{OH})$.

3.1.2. Complexes 2-4

The appropiate amine $\mathrm{NH}_{2} \mathrm{R}(0.1037 \mathrm{mmol})$ was
 $\mathrm{Br})(\mu-\mathrm{OH})](60 \mathrm{mg}, \quad 0.1037 \mathrm{mmol})$ in chloroform $\left(2 \mathrm{~cm}^{3}\right)$, and the solution was stirred for 1 h . After partial evaporation of the solvent under reduced pressure, the addition of hexane caused the precipitation of white or yellowish solids which were filtered off and air-dried.

Complex 2: ' H NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 7.78\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{4}\right.$, of $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}, J 7.8\right), 7.10\left(\mathrm{~m} .3 \mathrm{H}, \mathrm{H}_{m}+\mathrm{H}_{p}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}\right)$, $7.0-6.9(\mathrm{~m}, 8 \mathrm{H}$, arom. of dmba $), 3.90\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{NCH}_{2}, J\right.$ 13.7), $3.67\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{NCH}_{2}, J 13.7\right), 2.79\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right)$, 2.66 (s, $6 \mathrm{H}, \mathrm{NCH}_{3}$).

Complex 3: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 7.66\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{1}\right.$, of $\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NH}, J$ 8.2), 7.0-6.9 (m, 10H, H_{m} " of $\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NH}+$ arom. of dmba). 3.90 (d. $2 \mathrm{H}, \mathrm{NCH}_{2}, J$ 13.7). $3.66\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{NCH}_{2}, J 13.7\right), 2.80\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right)$. $2.66\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of $\left.\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NH}\right)$.

Complex 4: 'H NMR (CDCl ${ }_{3}$): $\delta 7.70$ (d. $2 \mathrm{H} . \mathrm{H}_{4}$, of $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{NH}, J 8.7$), $7.0-6.9\left(\mathrm{~m}, 8 \mathrm{H}\right.$, arom. of $\left.\mathrm{dmba}^{2}\right)$, $6.66\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{m}\right.$ of $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{NH}, J$ 8.7), $3.89(\mathrm{~d} .2 \mathrm{H}$, $\mathrm{NCH}_{2}, J 13.7$), 3.70 (s, 3H. CH_{3} of $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{NH}$). 3.65 (d, 2H, NCH_{2}, J 13.7), 2.79 (s, $6 \mathrm{H}, \mathrm{NCH}_{3}$), 2.65 (s. $6 \mathrm{H}, \mathrm{NCH}_{3}$).

3.1.3. Compleves 5 and 6

The appropiate thiol RSH ($0,1037 \mathrm{mmol}$) was added To a solution of $\left.\left[\left(\mathrm{Palf}_{n} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)\right)_{2}(\mu-\mathrm{Br})(\mu-\mathrm{OH})\right]$ (60 mg , (0.10 .37 mmol) in chloroform ($2 \mathrm{~cm}^{3}$). The result ing solution was stirred for 1 h . Partial evaporation of the solvent under reduced pressure, followed by addition of hexane, caused the precipitation of white or yellowish solids which were filtered off and air-dried.

Complex 5: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.55(\mathrm{~m}, 2 \mathrm{II}$, arom. dmba), 6.90 (m, 6H, arom. dmba), 3.81 ($\mathrm{s}, 4 \mathrm{H}$, NCH_{2}), $2.70\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.64\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}, J\right.$ 7.3), 1.61 (1, 3H, CH3 CH $\mathrm{CH}_{2} \mathrm{~S}, J 7.3$).

Complex 6: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.74$ (m. 2 H. arom. dmba), 6.89 ($\mathrm{m}, 6 \mathrm{H}$, arom. dmba), 4.15 (d. 2 H , NCH_{2}, J 13.6). $3.45\left(\mathrm{~d} .2 \mathrm{H}, \mathrm{NCH}_{2}, J 13.6\right), 2.73$ (s , $\left.6 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.63\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right), 1.56$ ($\mathrm{s}, 9 \mathrm{H},{ }^{1} \mathrm{BuS}$).

3.1.4. Complexes 7 and 8

The appropiate thiol RSH (0.1037 mmol) was added to a solution of $\left.\left[\left(\mathrm{Pdl}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)\right)_{2}(\mu-\mathrm{Br})(\mu-\mathrm{OH})\right]$ (60 mg .0 .1037 mmol) in chloroform ($2 \mathrm{~cm}^{3}$). The resulting solution was stirred for 30 min . during which time complexes 7 and 8 precipitated and were filtered off and air-dried.

Complex 7: ' H NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {, }}\right.$ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}$), 7.60 (m, 2 H , arom. dmba), 7.05 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}_{m+p}$
$\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}\right) .6 .89\left(\mathrm{~m} .6 \mathrm{H}\right.$, arom. dmba), 3.83 (s, $4 \mathrm{H}, \mathrm{NCH}_{2}$), 2.74 (s. $12 \mathrm{H}, \mathrm{NCH}_{3}$).

Complex 8: ${ }^{\prime} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.97$ (d, $2 \mathrm{H}, \mathrm{H}_{4}$ $\mathrm{p}-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{~S}, J 8.1$) , $7.61(\mathrm{~m}, 2 \mathrm{H}$, arom. dmba) , 6.87 (m. $8 \mathrm{H}, \mathrm{H}_{m} p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{~S}+$ arom. dmba), 3.82 ($\mathrm{s}, 4 \mathrm{H}$, NCH_{2}) , 2.73 (s. $12 \mathrm{H} . \mathrm{NCH}_{3}$). 2.15 (s, $3 \mathrm{H}, p$ $\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{~S}$)

3.2. Crystal structure determination of complex 1

Suitable crystals were grown from dichloro-methane-hexane. Crystal data: $\mathrm{Pd}_{2} \mathrm{BrON}_{2} \mathrm{C}_{18} \mathrm{H}_{25}$, orthorhombic, Pbca, $a=12.445(3), b=18.029(3), c=$ 17.436(3) $\AA, V=3912.1(12) \AA^{3}, \quad D_{\mathrm{c}}=1.967 \mathrm{~g} \mathrm{~cm}^{-3}$, $M=579.12, F(000)=2264, \mu=38.472 \mathrm{~cm}^{-1}, Z=8$.

5102 reflections up to $0=28^{\circ}$ (4710) independent) were measured on an Enraf Nonius CAD4 diffractometer with graphite monochromated $\mathrm{Mo} \mathrm{K} \alpha$ radiation and using $\omega-2 \theta$ scan mode. 2692 reflections were considered as observed with $I>3 \sigma(I)$ criterion. Scattering factors and anomalous dispersion coefficients were taken from Ref. [15]. The heavy-atom (Pd) method and DIRdif [16] system were followed by normal Fourier synthesis. Most of the H atoms were found on a difference map; others were located at the calculated positions [17].

Full-matrix least squares refinements [18]. 217 variables, 2475 degrees of freedom, ratio of freedom 12.4, non-H atoms anisotropic, H atoms isotropic. Least squares weights were applied so as to give no trends in $\left\langle\omega \Delta^{2} F\right\rangle$ vs. $\left\langle F_{0}\right\rangle$ and $\langle\sin \theta / \lambda\rangle$ with $\omega=K /\left(\sigma_{1}^{2} \sigma_{i}^{2}\right)$ where $K=1, \sigma_{1}=f\left(F_{n}\right)$ and $\sigma_{i}^{2}=g(\sin \theta / \lambda)[19]$ Final R and R_{4} were 0.039 and 0.040 respectively. Geometrical calculations were performed with parst [20] and csu [21] on a VAX 6410 .

Additional material from the authors or the Cambridge Crystallographic Data Centre comprises tables of It coordinates, thermal parameters, bond distances and bond angles. Stucture factors tables are available from the atuthors.

Acknowledgements

Financial support from the DGICYT (project PB94. 1157). Spain, is gratefully acknowledged.

References

[1] G. Lóperz. J. Ruiz. G. García. C. Vicente. J. Casabó, E. Molins and C. Miravitlles, Inorg. Chem., 30 (1991) 2605 .
[2] G. Lopez, G. Garcia, G. Sanchez, J. Garcia. J. Ruiz. J.A. Hermoso. A. Vegas and M. Martinez Ripoll. Inorg, Chom. il (1992) 1518.
[.3] G. López. J. Ruiz, G. García, C. Vicente. J.M. Martí. J.A. Hermoso. A. Vegas and M. Martínez-Ripoll, I. Chem. Sirc: Dalton Trans., (1992) 53..
[4] G. Loppez, J. Ruiz, G. Garcia, J.M. Manti. G. Sánchez and J. Garcia. J. Orgunomet. Chem., 412 (1以,1) 435.
[5] J. Ruiz, C. Vicente, J.M. Marti, N. Cutillas, G. García and G. López. J. Organmmet. Chem. 460 (1993) 241.
[6] J. Ruiz, M.T. Martinez. C. Vicente, G. García. G. López. P.A. Chaloner and P.B. Hitchcock, Organometallics. 12 (1993) 4321.
[7] G. López, J. Ruiz, G. Garcia, C. Vicente, V. Rodriguez, G. Sánchez, A. Hermoso and M. Martinez-Ripoll. J. Chem. Sne. Dallon Trans., (1992) 1681.
[8] G. López. G. Sánchez, G. García, J. Ruiz, J. Garcia, M. Martínez-Ripoll, A. Vegas and J.A. Hermoso, Angew. Chem. Int. Ed. Engl., 30 (1991) 716.
[9] J. Ruiz, N. Cutillas, J. Torregrosa. G. Garcia, G. López. P.A. Chaloner, P.B. Hitcheock and R.M. Harrison, J. Chem. Soc: Dalton Trans., (1994) 2353.
[10] C.K. Jhonson. ortep. Rep. ORNl. 3794.1965 (Oak Ridge National Laboratory. Tennessee).
[11] G. Desiraju. Crystal Engineering, Elsevier, 1989.
[12] G. van Koten and J.G. Noltes. J. Am. Chem. Soc.. 101 (1979) 6593.
[13] M.J. Baena, P. Espinet, M.B. Ros, J.L. Serrano. and A. Ezcurra. Anver. Chem. Int. Ead Eng:- 32 (1993) 1201.
[14] B.N. Cockburn, D.V. Howe, T. Keating, B.F.G. Johnson and J. Lewis, J. Chem. Soc: Daton Trans., (1973) 405.
[15] International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham, UK, 1974.
[16] P.T. Beurskens, W.P. Bosman, H.M. Doesburg, R.O. Gould, Th.E.M. Van Der Hark, P.A. Prick, J.H. Noordik, G. Beurskens, V. Parthasarathi, H.J. Bruins Slot and R.C. Haltiwanger, DIRDIF System of Computer Programs. Technical Rep. 1983/1, 1983 (Crystallography Laboratory. Toemooiveld, 6525 ED Nijmegen, Netherlands).
[17] J. Fayos and M. Martinez-Ripoll, hsearch. A Computer Program for the Geometric Calcalation of \boldsymbol{H}-atoms Coordinates, Instituto Rocasolano C.S.I.C., Madrid, 1978.
[18] J.M. Stewart, F.A. Kundell and J.C. Baldwin, The xrayro System of Crystallographic Progrums. Computer Science Center, University of Maryland, College Park, MD. 1976.
[19] M. Martinez-Ripoll and F.H. Cano, pesos. A Computer Program for the Automatic Treatment of Weightug Schumes, Instituto Rocasolano C.S.I.C. Madrid. 1975.
[20] M. Nardelli, Parst. Universita di Parna. Parma. Italy. 1983.
[21] I. Viskovic, csu, University of Zagreb, Zagreb. 1988.

[^0]: Corresponding author.

[^1]: *With decomposition. ${ }^{\text {" }}$ Calculated values in parentheses. ${ }^{\text {c }}$ In Nujol mults. ${ }^{4}$ Analysis of $\mathrm{Br}=13.6(13.8) \%$.

[^2]: ${ }^{\text {a }} U_{e q}=(1 / 3) \sum\left[U_{i j} a_{i}{ }^{\circ} a_{j}{ }^{*} a_{i} a_{j} \cos \left(a_{i}, a_{j}\right)\right] \times 10^{3}$.

